

Installation- & user instructions

NILAN LON module for CTS6000

Valid for: CTS6000, SW 1.0092 →

Contents

Contents	5
Figure table	
General description of NilLON	
Installation	
Installation and operating instructions	[
Network variables	0
Network variable, Inputs	
Network variable, Outputs	
Introduction	
Function	
Input variables	
Temperature Setpoint Input	
Application Mode Input	
Auxilliary Heat	
Minimum Summer Inlet Temperature Input	
Minimum Winter Inlet Temperature Input	
Static pressure Outlet duct Input	
Maximum Inlet Temperature	
Static pressure Inlet duct Input	
Alarm Flag	
Outlet Fan speed Input	
Inlet Fan speed Input	
Controlling sensor Input	. 15
Calendar and Time Input	
Output variables	
Unit Status Output	
Calender and Clock readout	
Temperature T1 to T17 Output	
Outlet Fan capacity	
Inlet Fan capacity	
HVAC Status Output	
Water valve capacity	
VTZ performance	
Compressor Pressure HP	
Compressor Pressure LP	
Pressure drop inlet filter	. 21
Pressure drop outletfilter	
Actual Pressure in inlet Duct	
Actual Pressure in outlet Duct	. 22
Alarms	
Configuration Properties	
Temperature Setpoints (Mandatory)	. 24
Send Heartbeat (Mandatory)	. 24
Location Label (optional)	. 24
Receive Heartbeat (optional)	
Power-up State	
Additional Considerations	
Eksample	
Preface	
Switching to LON/ Modbus communication	
Modbus (LON operation (normal)	30

Figure table

Figure 1: CTS6000 user interface	4
Figure 2: NilLON interface	
Figure 3: Function block	9
Figure 4 PI diagram normal operation	
Figure 5 Activating LON	
Figure 6 Activating MODBUS	
Figure 7 Modbus/LON setpoint operation	

General description of NilLON

NilLON will connect a Nilan Ventilation unit to a LON Network. Via NilLON it is possible to control the HVAC unit and get its status.

NilLON is designed using a FT-X3, an FTT10 transceiver and a 128Kbyte Flash memory, which makes updating of software possible.

NilLON uses self documentation strings, which means an installation-tool can access the relevant information over the network, otherwise NilLON_HVAC.xif can be requested at Nilan A/S

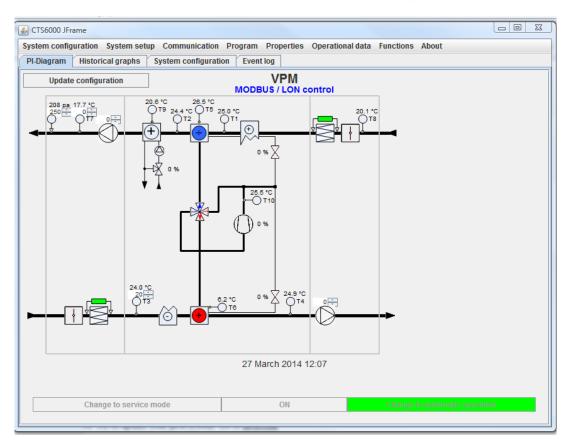
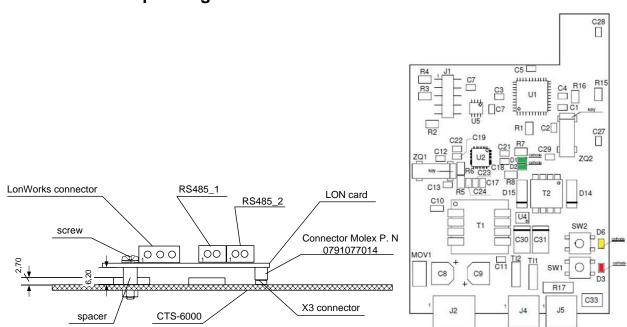


Figure 1: CTS6000 user interface

Installation


When NilLON is delivered it is already configured. This means that when it is powered up the application program will start automatically. The Flash memory will contain Firmware and application code. Furthermore the communication parameters will be present in the EEPROM memory of the neuron-chips. The customer will need to install the network and make the required bindings.

NilLON can be installed by pushing the SERVICE pin (SW2) which will cause the neuron-chip to transmit a unique 48 bit ID code to the network.

The SERVICE pin SW1 will reset and restart the LON chip. It has NO influence on MODBUS chip. NilLON has a yellow service LED which indicates various states of the interface. When NilLON is installed, it should only flash for a moment and then remain off.

For further information see Echelon documentation.

Installation and operating instructions

LonWorks interface connector

Pin number	Description
1	Zero
2	NETA
3	NETB

RS485 interface connector

It is mandatory to have min. 3-wire connection: RS485 -B, S485 - A & COM.

It is recommended to use a shielded connection.

Connector name	Pin number	Decription
RS485_1	1	RS485 –B (DATA -)
RS485_1	2	RS485 – A (DATA +)
RS485_2	1	COM
RS485_2	2	SHIELD

Figure 2: NilLON interface

Network variables

Network variable, Inputs

NV# (M/O)	Name	Recv HrtBt		SNVT Index	Class	Description
2 (M)	nviSetpoint	No	SNVT_temp_p	105	RAM	Setpoint from Network
5 (O)	nviApplicMode	No	SNVT_hvac_mode	108	RAM	Command from System
9 (O)	nviAuxHeat nviAuxHeat2	No	SNVT_switch SNVT_switch_2	95 189	RAM	Auxiliary Heat Enable
11 (O)	nviMinInletSum	No	SNVT_temp_p	105	RAM	Minimum Inlet Temperature Summer
12 (O)	nviMinInletWin	No	SNVT_temp_p	105	RAM	Minimum Inlet Temperature Winter
13 (O)	nviMaxInlet	No	SNVT_temp_p	105	RAM	Maximum Inlet Temperature
14 (O)	nviVAVOutlet	No	SNVT_press_p	113	RAM	Pressure setpoint in Outlet Duct
15 (O)	nviVAVInlet	No	SNVT_press_p	113	RAM	Pressure setpoint in Inlet Duct
16	nviAlarmFlag nviAlarmFlag2	No	SNVT_switch SNVT_switch_2	95 189	RAM	Switch for resetting Alarms
17 (O)	nviOutletFanSpd nviOutletFanSpd2	No	SNVT_switch SNVT_switch_2	95 189	RAM	Fan speed for fixed speed fans or.VLT controlled fans
18 (O)	nvilnletFanSpd nvilnletFanSpd2	No	SNVT_switch SNVT_switch_2	95 189	RAM	Fan speed for fixed speed fans or.VLT controlled fans
19	nviCntSensor	No	SNVT_switch	95	RAM	Choose controlling sensor 0=T7, 1=T3
20	nviCalTime	No	SNVT_time_stamp	84	RAM	Calendar and Clock set

SNVT_switch (95) - old and supported by all systems SNVT_switch_2 (189) is new. Present in LonMark® Resource Files ReadMe File since Version 13.02 beta, January 2008.

Each SNVT_switch_2 is duplicated by SNVT_switch variable. SNVT_switch has higher priority. If value in SNVT_switch <> 0, then SNVT_switch_2 will be ignored. Only if SNVT_switch value will be = 0, then data will be taken form SNVT_switch_2.

Subject to alterations NILAN A/S Page 6 of 30

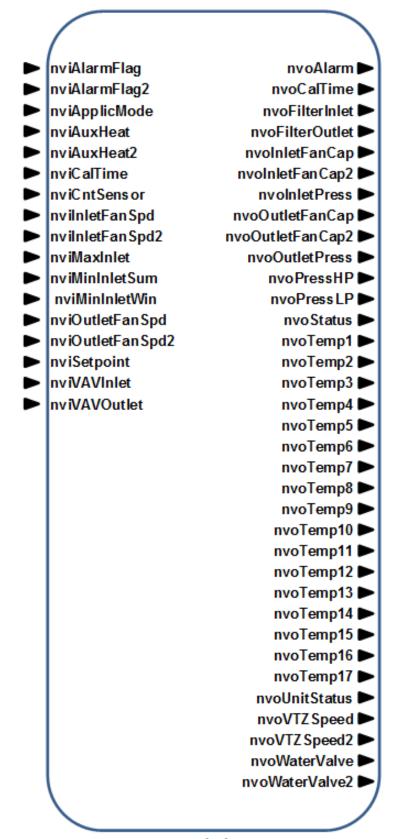
Network variable, Outputs

NV # (M/O)	Name	Send HrtBt	, , , , , , , , , , , , , , , , , , ,	SNVT Index	Class	Description	
4 (M)	nvoUnitStatus		SNVT_hvac_statu s	112	RAM	The actual status of the unit	
22	nvoTemp1	Yes	SNVT_temp_p	105	RAM	Temperature after heatpipe	
23	nvoTemp2	Yes	SNVT_temp_p	105	RAM	Temperature after heat pump	
24	nvoTemp3	Yes	SNVT_temp_p	105	RAM	Temperature space temperature	
25	nvoTemp4	Yes	SNVT_temp_p	105	RAM	Temperature exhaust air	
26	nvoTemp5	Yes	SNVT_temp_p	105	RAM	Temperature evaporator / condenser	
27	nvoTemp6	Yes	SNVT_temp_p	105	RAM	Temperature evaporator / condenser	
28	nvoTemp7	Yes	SNVT_temp_p	105	RAM	Temperature inlet air	
29	nvoTemp8	Yes	SNVT_temp_p	105	RAM	Temperature outdoor air	
30	nvoTemp9	Yes	SNVT_temp_p	105	RAM	Temperature water aux. heater	
31	nvoTemp10	Yes	SNVT_temp_p	105	RAM	Temperature compressor 1	
32	nvoTemp11	Yes	SNVT_temp_p	105	RAM	Temperature compressor 2	
33	nvoTemp12	Yes	SNVT_temp_p	105	RAM	Temperature compressor 3	
34	nvoTemp13	Yes	SNVT_temp_p	105	RAM	Temperature compressor 4, 5 and 6	
35	nvoTemp14	Yes	SNVT_temp_p	105	RAM	Temperature return water aux. heater	
36	nvoTemp15	Yes	SNVT_temp_p	105	RAM	Temperature T15 unused	
37	nvoTemp16	Yes	SNVT_temp_p	105	RAM	Temperature T16 unused	
38	nvoTemp17	Yes	SNVT_temp_p	105	RAM	Temperature T17 unused	
39	nvoOutletFanCap nvoOutletFanCap2	Yes	SNVT_switch SNVT_switch_2	95 189	RAM	Capacity of outlet fan	
40	nvolnletFanCap nvolnletFanCap2	Yes	SNVT_switch SNVT_switch_2	95 189	RAM	Capacity of inlet fan	
41	nvoStatus	Yes	SNVT_state_64	165	RAM	Status of the units I/O	
42	nvoWaterValve nvoWaterValve2	Yes	SNVT_switch SNVT_switch_2	95 189	RAM	Regulation value of auxiliary water heater	
43	nvoVTZSpeed nvoVTZSpeed2	Yes	SNVT_switch SNVT_switch_2	95 189	RAM	Speed of the VTZ compressor in %	
44	nvoFanOut	Yes	SNVT_switch_2	189	RAM	Outlet fan speed in %	
45	nvoUnUsed	Yes	SNVT_switch_2	189	RAM	Unused output	
46	nvoUnUsed	Yes	SNVT_switch_2	189	RAM	Unused output	
47	nvoFanIn	Yes	SNVT_switch_2	189	RAM	Inlet fan speed in %	
48	nvoPressHP	Yes	SNVT_press_f	59	RAM	Pressure at high pressure side of the compressor.	
49	nvoPressLP	Yes	SNVT_press_f	59	RAM	Pressure at low pressure side of the compressor.	
50	nvoFilterInlet	Yes	SNVT_press_p	113	RAM	Pressure drop over inlet filter in Pa	
51	nvoFilterOutlet	Yes	SNVT_press_p	113	RAM	Pressure drop over Outlet filter in Pa	
52	nvolnletPress	Yes	SNVT_press_p	113	RAM	Actual pressure in Inlet duct	
53	nvoOutletPress	Yes	SNVT_press_p	113	RAM	Actual pressure in Outlet duct	
54	nvoAlarm	Yes	SNVT_alarm_2	164	RAM	Latest alarm with time stamp from the unit	
55	nvoCalTime	Yes	SNVT_time_stam p	84	RAM	Calendar and Clock readout	

Introduction

CTS6000 is a LON <u>Slave</u> and communicates at speeds up to 38400 bps. The LON is activated by placing a tick in the LON communication box under System settings.

Preface


This manual contains information regarding the monitoring and control of Nilan CTS6000 via LON. Some examples of how LON / MODBUS are used can be found at the end of the manual.

The communication order

There is a 2 second pause between every request.

Device	CTS6000		LON Card		LON Master
Interface		IIC		UART	
	Sync the	CTS6	000 parameters with the	Storag	e Memory
	Send Output Parameters	\rightarrow	Store Parameters		
	Get Input Parameters	←	Send Parameters		Е
		D	ata exchange over Mod	bus	
				←	Send Request For Input Parameters
			Send Required parameters	\rightarrow	
				←	Send New Parameters
			Send Acknowledge	\rightarrow	

Function

Func Block 1

Figure 3: Function block

Input variables

Temperature Setpoint Input

network input SNVT temp p nviSetPoint;

This input network variable is used to allow the temperature setpoint. This network variable input is mandatory to the profile, it does not have to be bound to any setpoint node. If a valid setpoint value is written to nviSetPoint, it will be used as the center setpoint.

Temperature Setpoint must be set if "Controlling Sensor" is changed.

Valid Range

-327.68 to 327.66°C (0.01°C)

The value 0x7FFF=+327.67°C will be handled as an invalid value.

Default Value

The Default Value is the invalid value of 0x7FFF which equates to+327.67°C.

This value will be adopted at power-up and remains in effect until an update is received. This value will also be adopted if a bound input does not receive an update within the optional Receive Heartbeat, ncirculate.

Application Mode Input

network input SNVT hvac mode nviApplicMode;

This network variable input is used to coordinate the Heat Pump with any supervisory controller or intelligent human interface device.

This network variable is required for Water Source Heat Pumps that do not have another way of detecting waterflow to the unit. This network variable is used to lock out compressor operation when a supervisory controller determines that water is not being provided to the unit. In this case, the HVAC_FANONLY state is necessary to provide ventilation to the space and disable compressor operation at the same time.

Valid Range

HVAC_AUTO : The control loop automatically changes between application modes

(e.g. HEAT and COOL) to provide the control objectives.

Both Heating and Cooling are enabled.

HVAC_HEAT : Heating is enabled and Cooling is disabled.

HVAC_MRNG_WRMUP: Requires recirculation module, warmup is performed using auxiliary

heat, inlet fan is running

HVAC_COOL : Cooling is enabled and Heating is disabled. HVAC_FANONLY : Both Heating and Cooling are disabled.

This disables compressor operation. Fan Operation is enabled.

HVAC OFF : The control loop is "off" and all outputs are "off" position.

HVAC_FREE_COOL : Fan Operation is enabled. Both Heating and Cooling is disabled.

HVAC_NUL : 0xFF, Invalid value

The other enumerations provided by SNVT_hvac_mode are optional.

Default Value

The default value is HVAC_AUTO. This value will be adopted at power-up and remains in effect until an update is received. This value will also be adopted if a bound input does not receive an update within the optional Receive Heartbeat, ncircvHrtBt.

Auxilliary Heat

network input SNVT switch nviAuxHeat;

This input network variable indicates whether auxilliary heat has been enabled or disabled. If auxilliary heat is enabled, it is allowed in the heating mode.

This command does not force the unit into heating.

Valid Range

Level Value	Command Explanation
0 (OFF)	Disabled
1 (ON)	Enabled

Note: any non-zero value can be used as enabling command

Value field: Not used

Default Value

The default value is ON. This value will be adopted at power-up and remains in effect until an update is received. This value will also be adopted if a bound input does not receive an update within the optional Receive Heartbeat, ncirculttel. Setting this value to ON ensures that if an auxiliary heat enable command is not provided, the unit will be will be able use an auxiliary source of heat if it exists.

Minimum Summer Inlet Temperature Input

network input SNVT_temp_p nviMinInletSum;

This input network variable is used to set the minimum inlet temperature allowed when the HVAC unit is running in summer mode.

Valid Range

0 to 38.0°C (0.1°C)

A value of 32767 (0x7fff) indicates an invalid value.

Default Value

The Default Value is +16.00°C. This value will be adopted at power-up and remains in effect t until an update is received.

This value will also be adopted if a bound input does not receive an update within the Optional Receive Heartbeat, nciRcvHrtBt.

Minimum Winter Inlet Temperature Input

network input SNVT_temp_p nviMinInletWin;

This input network variable is used to set the minimum inlet temperature allowed when the HVAC unit is running in winter mode.

Valid Range

0 to 38.0°C (0.1°C)

A value of 32767 (0x7fff) indicates an invalid value.

Default Value

The Default Value is +18.00°C. This value will be adopted at power-up and remains in effect until an update is received.

This value will also be adopted if a bound input does not receive an update within the optional Receive Heartbeat, nciRcvHrtBt.

Static pressure Outlet duct Input

network input SNVT_press_p nviVAVOutlet;

This input network variable is used to set the setpoint for the Outlet duct static pressure

Valid Range

0 .. 400 Pa (1 Pa)

A value of 32767 (0x7fff) indicates an invalid value.

Default Value

The Default Value is +10 Pa. This value will be adopted at power-up and remains in effect until an update is received.

This value will also be adopted if a bound input does not receive an update within the optional Receive Heartbeat, nciRcvHrtBt.

Maximum Inlet Temperature

network input SNVT temp p nviMaxInlet;

This input network variable is used to set the maximum inlet temperature allowed when the HVAC unit is running.

Valid Range

+10.0 to +50.0°C (0.1°C)

A value of 32767 (0x7fff) indicates an invalid value.

Default Value

The Default Value is +30.00°C. This value will be adopted at power-up and remains in effect until an update is received.

This value will also be adopted if a bound input does not receive an update within the optional Receive Heartbeat, nciRcvHrtBt.

Static pressure Inlet duct Input

network input SNVT_press_p nviVAVInlet;

This input network variable is used to set the setpoint for the inlet duct static pressure.

Valid Range

0 .. 400 Pa (1 Pa)

A value of 32767 (0x7fff) indicates an invalid value.

Default Value

The Default Value is +10 Pa. This value will be adopted at power-up and remains in effect until an update is received.

This value will also be adopted if a bound input does not receive an update within the optional Receive Heartbeat, nciRcvHrtBt.

Alarm Flag

network input SNVT_switch nviAlarmFlag;

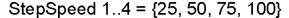
Following an alarm message the HVAC unit will enter a fault condition. Only after the fault has been rectified and the master has acknowledged the alarm message by setting nviAlarmFlag, can the HVAC unit resume operation.

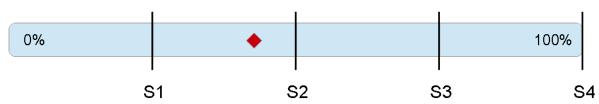
Valid Range

Level Value Command Explanation			
0 (OFF)	No function		
1 (ON)	Reset		

Note: any value different from zero causes alarm reset

Value field: Not used


Default Value


The default value is OFF. This value will be adopted at power-up and remains in effect until an alarm is received

Outlet Fan speed Input

network input SNVT switch nviOutletFanSpd;

This input network variable is used to set the outlet fan speed, for HVAC units equipped with one -, two speed or VLT controlled fan motors without pressure transmitters.

Modbus data = value x 2;

Speed = [S2] = 50%

Formula: Value / 2 = Fan speed

Speed			
Speed	1 Speed	2 Speeds	VLT controlled
Off	1	1	1
1	200	150/167 ⁽¹⁾	S1 ⁽²⁾
2	-	200	S2 ⁽²⁾
3	-	-	S3 ⁽²⁾
4	-	-	S4 ⁽²⁾

- 1. Fan speed depends on settings: fan speed can be 50% or 66% of power.
- 2. FAN speed may be adjusted individually, but always 1 < S1 < S2 < S3 < S4.

A value of -128 (0) indicates an invalid value.

Default Value

The Default Value is 100%. This value will be adopted at power-up and remains in effect until an update is received.

This value will also be adopted if a bound input does not receive an update within the optional Receive Heartbeat, nciRcvHrtBt.

Inlet Fan speed Input

network input SNVT switch nviInletFanSpd;

This input network variable is used to set the outlet fan speed, for HVAC units equipped with one -, two speed or VLT controlled fan motors without pressure transmitters.

Formula: Value / 2 = Fan speed

Speed		Fan type	
Speed	1 Speed	2 Speeds	VLT controlled
Off	1	1	1
1	200	150/167 ⁽¹⁾	S1 ⁽²⁾
2	-	200	S2 ⁽²⁾
3	-	-	S3 ⁽²⁾
4	-	-	S4 ⁽²⁾

- 1. Fan speed depends on settings: fan speed can be 50% or 66% of power.
- 2. FAN speed may be adjusted individually, but always 1 < S1 < S2 < S3 < S4.

A value of -128 (0) indicates an invalid value.

Default Value

The Default Value is 100%. This value will be adopted at power-up and remains in effect until an update is received.

This value will also be adopted if a bound input does not receive an update within the optional Receive Heartbeat, nciRcvHrtBt.

Controlling sensor Input

network input SNVT_switch nviCntSensor;

This input network variable is used to define, which sensor will be the controlling sensor for the HVAC unit. When "Controlling sensor" is changed, the "Temperature Setpoint" must be set too.

Valid Range

Level Value	Command Explanation
0 (OFF)	Controlling sensor is T7 constant inlet temperature
1 (ON)	Controlling sensor is T3 room compensated

Value field: Not used

Default Value

The default value is OFF. This value will be adopted at power-up and remains in effect until an alarm is received

Calendar and Time Input

network input SNVT_time_Stamp nviCalTime;

This input network variable is used to set the internal Clock in the HVAC unit.

Valid Range

Year : 0-3000, 0xFFFF (INVALID). Zero (0) means year not specified. Minus one (-1)

represents NULL date.

Month : 0-12, 0xFFFF (INVALID).Zero (0) means month not specified.

Day : 0-31, zero (0) means day not specified. Hour : 0-23, This field uses a 24-hour value.

Minutes: 0-59, Minute of Hour output field will be zero if it doesn't apply to a particular unit.

Second: 0-59, Second of minute.

Default Service Type

Output variables

Unit Status Output

network output SNVT hvac status nvoUnitStatus;

Heat and cooling fan outputs are calculated as mean values for the components.

This output network variable is available to report the object status. It combines the operating mode, the capacity of heating and cooling used and an indication if any alarms are present in the object.

Valid Range

Mode : HVAC_AUTO, HVAC_HEAT, HVAC_ MRNG_WRMUP. HVAC_COOL

HVAC_OFF, HVAC_FANONLY. HVAC_FREE_COOL

Other enumeration is optional.

heat_output_primary : 0-100%, 0xFFFF (INVALID). (Compressor)
heat_output_secondary : 0-100%, 0xFFFF (INVALID). (Heating Element)
cool_output : 0-100%, 0xFFFF (INVALID). (Compressor)

econ_output : 0-100%, 0xFFFF (INVALID). The economizer output field will be zero if

it doesn't apply to a particular unit. (Not used)

fan_output : 0-100%, 0xFFFF (INVALID). For fans that have only an on/off state

the capacity values will be either 0.0 or 100.0% respectively.

in_alarm : 0 Means there is no alarm. Not 0 Means there is an alarm. A filter

alarm will also be indicated using this field.

When Transmitted

The variable is transmitted immediately when its value has changed significantly.

Additionally this network variable will also be transmitted as a heartbeat output on a regular basis as dictated by the optional Maximum Send Time configuration, ncisndHrtBt.

Default Service Type

The default service type is unacknowledged.

Calender and Clock readout

network input SNVT time Stamp nvoCalTime;

This output network variable is used to readout the internal Clock in the HVAC unit.

Valid Range

Year :0-3000, 0xFFFF (INVALID). Zero (0) means year not specified. Minus one (-1)

represents NULL date.

Month :0-12, 0xFFFF (INVALID).Zero (0) means month not specified.

Day :0-31, zero (0) means day not specified. Hour :0-23, This field uses a 24-hour value.

Minutes :0-59, Minute of Hour output field will be zero if it doesn't apply to a particular unit.

Second :0-59, Second of minute.

Default Service Type

Temperature T1 to T17 Output

network output SNVT temp p nvoTemp1 to nvoTemp17;

These output network variables are used to show the temperatures which are relevant for the HVAC unit.

Valid Range

-327.68 to 327.66°C (0.01°C)

A value of 32767 (0x7fff) indicates an invalid value.

When Transmitted

The variable is transmitted immediately when its value has changed significantly.

Additionally this network variable will also be transmitted as a heartbeat output on a regular basis as dictated by the optional Maximum Send Time configuration ncisndHrtBt.

Default Service Type

The default service type is unacknowledged.

Outlet Fan capacity

network output SNVT switch nvoOutletFanCap;

This output network variable is used to show the actual capacity of the outlet fan depending on the settings in either nvivAVOutlet or nviOutletFanSpd.

Valid Range

0 .. 100% (1%)

A value of -128 (0) indicates an invalid value.

When Transmitted

The variable is transmitted immediately when its value has changed significantly.

Additionally this network variable will also be transmitted as a heartbeat output on a regular basis as dictated by the optional Maximum Send Time configuration nciSndHrtBt.

Default Service Type

The default service type is unacknowledged.

Inlet Fan capacity

network output SNVT switch nvointletFanCap;

This output network variable is used to show the actual capacity of the outlet fan depending on the settings in either nviVAVInlet or nviInletFanSpd.

Valid Range

0.. 100% (1%)

A value of -128 (0) indicates an invalid value.

When Transmitted

The variable is transmitted immediately when its value has changed significantly.

Additionally this network variable will also be transmitted as a heartbeat output on a regular basis as dictated by the optional Maximum Send Time configuration ncisndHrtBt.

Default Service Type

HVAC Status Output

```
network output SNVT state 64 nvoStatus;
```

This output network variable provides detailed diagnostic information on the status of the HVAC unit.

Valid range

```
The individual bits of the network variable are used as follows:
Bit0 = Compressor 1 (1 = On; 0 = Off)
```

```
Bit1 = Compressor 2 (1 = On; 0 = Off)
```

Bit2 = Compressor 3
$$(1 = 0\pi, 0 = 0)$$

Bit2 = Compressor 3
$$(1 = On; 0 = Off)$$

Bit4 = 4-way valve
$$(0 = Heat mode; 1 = Cooling mode)$$

Bit5 = Electric heater step 1
$$(1 = On; 0 = Off)$$

Bit6 = Electric heater step 2 (
$$1 = On$$
; $0 = Off$)

Bit7 = Electric heater step 3
$$(1 = On; 0 = Off)$$

Bit8 = Pump statusfor water heating element
$$(1 = On; \theta = Off)$$

Bit9 = Active cooling (1 = the unit is running active cool;
$$0 = the unit is running in heat mode)$$

Bit10 = Common Alarm (
$$1 = there is no alarms; 0 = there is an alarm on the unit)$$

```
Bit11 = Exhaust fan step 1 (1 = On; 0 = Off)
```

Bit12 = Exhaust fan step 2
$$(1 = On; 0 = Off)$$

Bit13 = Inlet fan step 1
$$(1 = On; 0 = Off)$$

Bit14 = Inlet fan step 2
$$(1 = On; 0 = Off)$$

Bit15 = Bypass valve Cooling
$$(1 = Open; 0 = Closed)$$

Bit16 = Digital Out 1
$$(1 = On; 0 = Off)$$

Bit17 = Digital Out 2
$$(1 = On; 0 = Off)$$

Bit18 = Digital Out 3
$$(1 = On; 0 = Off)$$

Bit19 = Digital Out 4
$$(1 = On; 0 = Off)$$

Bit20 = Digital Out 5
$$(1 = On; 0 = Off)$$

Bit21 = Digital Out 6
$$(1 = On; 0 = Off)$$

Bit22 = Digital Out 7
$$(1 = On; 0 = Off)$$

Bit23 = Digital Out 8
$$(1 = On; 0 = Off)$$

Bit24 = AUX 1(1 = On; 0 = Off)

Bit25 = AUX 2 (1 = On; 0 = Off)

Bit26 = AUX 3 / Dampers (1 = On; 0 = Off)

Bit27 = AUX 4 (1 = On; 0 = Off)

Bit28 to Bit63 = future use

When transmitted

This value is transmitted immediately when its state has changed. Additionally, this network variable will also be transmitted as a heartbeat output on a regular basis as specified by the Maximum Send Time nciSndHrtBt configuration property.

Water valve capacity

network output SNVT_switch nvoWaterValve;

This output network variable is used to show the actual capacity of the Water valve when auxillary heat is required.

Valid Range

0 .. 100% (1%)

A value of -128 (0) indicates an invalid value.

When Transmitted

The variable is transmitted immediately when its value has changed significantly.

Additionally this network variable will also be transmitted as a heartbeat output on a regular basis as dictated by the optional Maximum Send Time configuration nciSndHrtBt.

Default Service Type

The default service type is unacknowledged.

VTZ performance

network output SNVT switch nvoVTZSpeed;

This output network variable is used to show the actual performance of the VTZ compressor.

Valid Range

0.. 100% (1%)

A value of -128 (0) indicates an invalid value.

When Transmitted

The variable is transmitted immediately when its value has changed significantly.

Additionally this network variable will also be transmitted as a heartbeat output on a regular basis as dictated by the optional Maximum Send Time configuration ncisndHrtBt.

Default Service Type

The default service type is unacknowledged.

Compressor Pressure HP

network output SNVT_press_f nvoPressHP;

This output network variable is used to show the actual pressure at the pressurized side of the compressor.

The pressure is read out in Pascal but should be converted to Bar (100000 Pa = 1 bar), giving nvoPressHP/100000 = pressure in bar.

Valid Range

-340282E38 .. 340282E38 (Pa)

When Transmitted

The variable is transmitted immediately when its value has changed significantly.

Additionally this network variable will also be transmitted as a heartbeat output on a regular basis as dictated by the optional Maximum Send Time configuration ncisndHrtBt.

Default Service Type

Compressor Pressure LP

network output SNVT press f nvoPressLP;

This output network variable is used to show the actual pressure at the suction side of the compressor.

The pressure is read out in Pascal but should be converted to Bar (100000 Pa = 1 bar), giving nvoPressLP/100000 = pressure in bar.

Valid Range

-340282E38 .. 340282E38 (Pa)

When Transmitted

The variable is transmitted immediately when its value has changed significantly.

Additionally this network variable will also be transmitted as a heartbeat output on a regular basis as dictated by the optional Maximum Send Time configuration ncisndHrtBt.

Default Service Type

The default service type is unacknowledged.

Pressure drop inlet filter

network output SNVT_press_p nvoFilterInlet;

This output network variable is used to show the pressure drop over the inlet filter.

The pressure read out is in Pascal.

Valid Range

-32768 .. 32766 (Pa)

A value of -32767 (0x7FFF) indicates an invalid value.

When Transmitted

The variable is transmitted immediately when its value has changed significantly.

Additionally this network variable will also be transmitted as a heartbeat output on a regular basis as dictated by the optional Maximum Send Time configuration ncisndHrtBt.

Default Service Type

The default service type is unacknowledged.

Pressure drop outletfilter

network output SNVT press p nvoFilterOutlet;

This output network variable is used to show the pressure drop over the outlet filter.

The pressure read out is in Pascal.

Valid Range

-32768 .. 32766 (Pa)

A value of -32767 (0x7FFF) indicates an invalid value.

When Transmitted

The variable is transmitted immediately when its value has changed significantly.

Additionally this network variable will also be transmitted as a heartbeat output on a regular basis as dictated by the optional Maximum Send Time configuration ncisndHrtBt.

Default Service Type

Actual Pressure in inlet Duct

network output SNVT press p nvoInletPress;

This output network variable is used to show the actual pressure in the inlet duct.

The pressure read out is in Pascal.

Valid Range

-32768 .. 32766 (Pa)

A value of -32767 (0x7FFF) indicates an invalid value.

When Transmitted

The variable is transmitted immediately when its value has changed significantly.

Additionally this network variable will also be transmitted as a heartbeat output on a regular basis as dictated by the optional Maximum Send Time configuration ncisndHrtBt.

Default Service Type

The default service type is unacknowledged.

Actual Pressure in outlet Duct

network output SNVT press p nvoOutletPress;

This output network variable is used to show the actual pressure in the outlet duct.

The pressure read out is in Pascal.

Valid Range

-32768 .. 32766 (Pa)

A value of -32767 (0x7FFF) indicates an invalid value.

When Transmitted

The variable is transmitted immediately when its value has changed significantly.

Additionally this network variable will also be transmitted as a heartbeat output on a regular basis as dictated by the optional Maximum Send Time configuration nciSndHrtBt.

Default Service Type

Alarms

network output SNVT alarm 2 nvoAlarm;

This output network variable is used to report alarm status for the device.

Formula: Alarm type : ID number

Priority level : 1-2-3-4

Alarm time : Time in seconds since 2000-01-01T00:00:00Z = recorded value

Milliseconds: Milliseconds = recorded value.

Alarm text : Alarm text = recorded value as null terminated string.

Level 1 = for information

Level 2 = the Alarm leads to a warning and status of the system. The system continues to operate under the actual conditions.

Level 3 = an Alarm to control the compressor = stop compressor; but the regulation is still active. Acknowledge of alarm needed to allow compressor to run.

Level 4 = critical alarm that stop the entire system.

Valid Range

alarm_type: *alarm_type_t* strucutre priority_level: *priority_level_t* strucutre

alarm_time: Unix format milliseconds: 0 to 999 ms sequence_number: 0 to 255

description: 22 chars of English text

When Transmitted

The variable is transmitted immediately when its value has changed significantly.

Additionally this network variable will also be transmitted as a heartbeat output on a regular basis as dictated by the optional Maximum Send Time configuration nciSndHrtBt.

Default Service Type

Configuration Properties

Temperature Setpoints (Mandatory)

network input config SNVT temp setpt nciTempSetpts;

This configuration property defines the occupancy temperature setpoints for heat and cool mode. The setpoint will have an assigned upper and lower limit for each state defined below within the min. and max. range.

Valid Range and Default Value

	Minimum	Maximum	Default
occupied_cool	10°C	35°C	23°C
standby_cool	10°C	35°C	25°C
unoccupied_cool	10°C	35°C	28°C
occupied_heat	10°C	35°C	21°C
standby_heat	10°C	35°C	19°C
unoccupied heat	10°C	35°C	16°C

SCPT Reference SCPTsetPnts(60)

Send Heartbeat (Mandatory)

network input config SNVT_time_sec nciSndHrtBt;

This configuration network variable defines the maximum period of time that expires before the following network variable outputs will automatically being updated:

- · nvoSpaceTemp,
- · nvoUnitStatus,
- · nvoEffectSetPt

Valid Range

The valid range is any value between 0.0 sec and 600 sec. Setting nciSndHrtBt = 0 disables the automatic update mechanism.

Default Value

0 (no automatic update)

SCPT Reference

SCPTMaxSendTime(49)

Location Label (optional)

network input config SNVT str asc nciLocation;

This configuration property can optionally be used to provide more descriptive physical location information than can be provided by the Neuron Chip's 6 byte location string.

The location relates to the object and not to the node.

Valid Range

Any NULL terminated ASCII string of 31 bytes total length.

Default Value

The default value is an ASCII string containing all zeros ("\0").

SCPT Reference

SCPT_location (17)

Receive Heartbeat (optional)

network input config SNVT_time_sec nciRcvHrtBt;

This configuration property is used to control the maximum time that elapses after the last update to a bound network input before the Heat Pump object adopts a default value for the following:

- · nviSpaceTemp,
- · nviSetpoint,
- · nviApplicMode,
- · nviOccCmd,
- · nviOccupSw,
- · nviSetPtOffset,
- · nviAuxHeat.

Valid Range

The valid range is any value between 0.0 sec and 600 sec. Setting nciRcvHrtBt = 0 disables this network variable receive failure detect mechanism.

Default Value

0 (no failure detect)

SCPT Reference SCPTMaxRcvTime(48)

Power-up State

Upon power-up the input variables are set to their default values. The output network variables will be set to their initial value as follows:

nvoSpaceTemp : INVALID

nvoEffectSetPt : 0

The fields in nvoUnitStatus will be set to the initial values:

Mode : HVAC_OFF

heat_output_primary : 0
heat_output_secondary : 0
econ_output : 0
fan_output : 0
in_alarm : 0

Additional Considerations

MODBUS communication according to instruction: "Database for CTS6000 MODBUS", Version 1.08-2, and Variable List, V2.02.

Eksample

Preface

Figure 4 illustrates the basic example described in the following. When LON / Modbus communication is active, it is not possible to stop the unit via the Java.

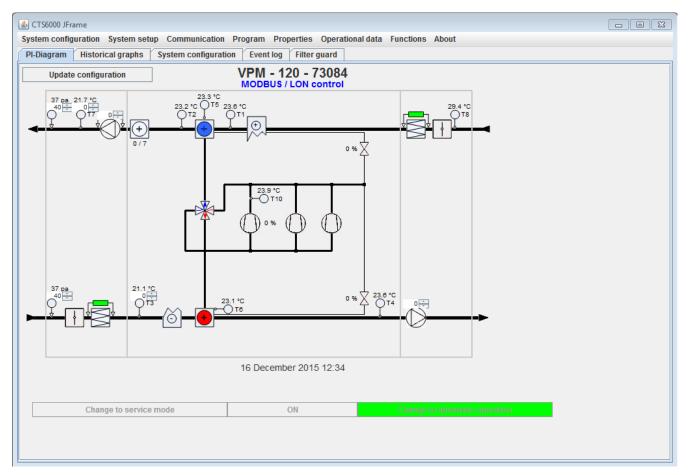


Figure 4 PI diagram normal operation

Switching to LON/ Modbus communication

To switch to LON / Modbus communication, open Unit configuration and place a tick in the box beside LON control, and press OK. When you open the window again you will see the card version. In this case ver. 1.7.4

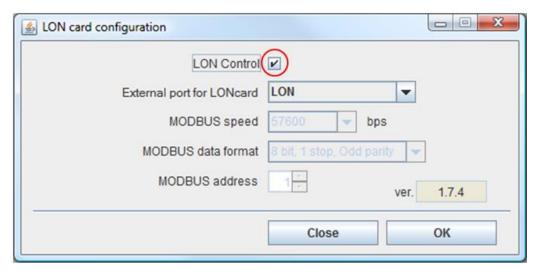
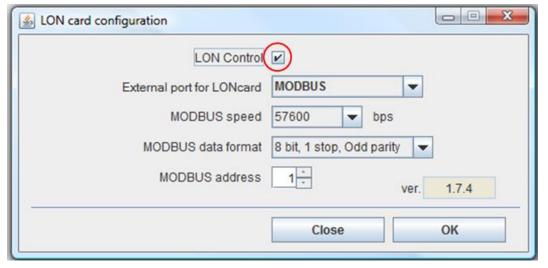



Figure 5 Activating LON

Figure 6 Activating MODBUS

Modbus /LON operation (normal)

This type of regulation is used for normal operation. The system operates according to the values entered in Setpoint, Manual control and VAV values. To set up the system, proceed as follows.

- 1. Set the required temperature in nviSetpoint.
- 2. Set the required fan speed in nviOutletFanSpd and nviInletFanSpd or
 - a. Set the required inlet pressure for VAV control in nviVAVInlet
 - b. Set the required exhaust pressure for VAV control in nviVAVOutlet
- 3. Set Start control in nviApplicMode.

Once the above-mentioned settings have been made, all that is required to start and stop the system is to write to start/stop control in nviApplicMode.

An example of how the parameters should be set is shown below:

 $nviSetpoint = 2100((21.0^{\circ}C))$

Either nviOutletFanSpd and nviInletFanSpd = 200 (100% for exhaust and inlet)

Or nviVAVInlet = 300 (300 Pa for inlet)

and nviVAVOutlet = 300 (300 Pa for exhaust)

nviApplicMode = 0 (Start automatic operation)

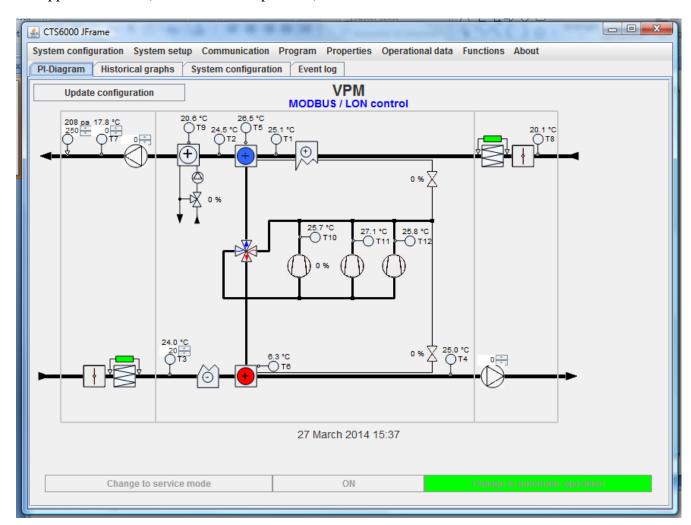


Figure 7 Modbus/LON setpoint operation